

SARULLA GEOTHERMAL PROJECT

Developing The Largest Geothermal Fields in the World

October 2017

PT Medco Power Indonesia

OUTLINES

 Introduction
 Geothermal in Indonesia
 Sarulla Geothermal Developing the Largest Geothermal Fields in the World MEDCOENERGI (M^E Introduction

What is Geothermal ?

The deeper you go, the hotter it is!

It's simply the heat energy of the earth, generated by various natural processes, such as :

- 1. Heat from when the planet formed and accreted, which has not yet been lost
- 2. Decay of radioactive elements
- 3. Friction
- 4. Etc...

MEDCOENERGI ()² How it Works

How Geothermal Resource is Located: Surface Manifestations

Stage in Geothermal Project :

MEDCOENERGI (P^{*} Geothermal in Indonesia

Indonesia sits above 40% of world's geothermal resources, or an equivalent of 29 GW potential resources. Out of which, less than 5% are currently utilized (fully developed). Indonesia is the third largest installed capacity in the world, after the USA and the Philippine. *So far Indonesia is the largest un-developed geothermal potential in the world*

Indonesia Geothermal Resources

No.	Island	Number of Location	Potential (MW)	Installed Capacity (MW)
1	Sumatera	90	12,778	122
2	Java	71	9,717	1,134
3	Bali & Nusa Tenggar	28	1,805	5
4	Kalimantan	12	145	
5	Sulawesi	65	3,044	80
6	Maluku	30	1,071	
7	Papua	3	75	
	Total	299	28,635	1,341

Geothermal technology has been utilized and proven. Kamojang operations is now entering its second 30-year period.

MEDCOENERGI (P^x Geothermal Potential in Indonesia

No	Location	Location	Potential Energy (Mwe)					
			Resource		Reserve			Installed
		Number	Speculative	Hypotetic	Probable	Possible	Proven	
1	Sumatera	97	2.893	1.935	5.097	930	917	342
2	Java	73	1.410	1.689	3.949	1.373	1.865	1.224
3	Bali	6	70	22	122	110	30	0
4	Nusa Tenggara	27	225	409	848	-	15	12,5
5	Kalimantan	14	152	17	13	-	-	0
6	Sulawesi	78	1.221	314	1.242	80	140	120
7	Maluku	33	560	91	775	-	-	0
8	Рариа	3	75	-	-	-	-	0
Total		331	6.596	4.477	12.046	2.493	2.967	
			11.073		17.506			1.698,5

INDONESIA GEOTHERMAL POTENTIAL

Resources 11,073 MW Reserves 17,506 MW *Geological Dept. Dec 2016*

GEOTHERMAL CONCESSION

19 existing WKP

52 New WKP

*WKP = Geothermal Working Area

1.01 GWh 8.66% of 2017 target (11.66 GWh)

KONDISI SAAT INI

Potensi Panas Bumi

28,5 GW Resources 11.073 MW Reserve 17.506 MW Badan Geologi, Desember 2016

Wilayah Kerja Panas Bumi

- 71 WKP
- Eksisting 19 WKP
- Baru 52 WKP

Regulasi

- UU No. 21/2014
- PP 59/2007 jo. PP 75/2015
- PP 28/2016
- PP 9/2012
- PP 79/2014
- PP 7/2017
- Perpres 4/2010
- Permen ESDM, PMK terkait & Permen LHK terkait

Kapasitas Terpasang

1698,5 MW

- 12 PLTP pada 10 WKP
- Pemanfaatan 9,7% dari cadangan panas bumi Indonesia

Produksi Listrik

Kendala Utama

- Tumpang tindih lahan
- Harga dan pendanaan
- Keterbatasan SDM dan Teknologi
- Isu Sosial

SARULLA GEOTHERMAL

- Location: North Sumatra, Indonesia
- Geologic Setting: Great Sumatra Fault Zone
- Simultaneous development of two resources in a single concession area
 - 1. SIL One unit of 110 MW
 - 2. NIL Two units of 110 MW each
- Potential development in Donotasik and Sibualbuali

MEDCOENERGI Project Location

Brief Project History MEDCOENERGI 27 Feb 1993 Unocal North Sumatra Geothermal ("UNSG") signed JOC (with Pertamina) and ESC (with PLN) 1993 - 1997UNOCAL conducted drilling exploration in Silangkitang, Namora I Langit and Sibual Buali, acquired some part of lands and built office/warehouse. 1998 Economic crisis occurred in Asia, project was halted 23 Jan 2004 Project assigned to PLN (effective February 24, 2004) by UNSG through Deed of Assignment 01 Dec 2004 Bid Submission for taking over of Project Letter of Award to Consortium 25 July 2006 14 Dec 2007 ESC Amendment (among PLN, Pertamina Geothermal Energy ("PGE") and Consortium) and JOC Amendment (between PGE and Consortium) were signed. Tariff – US¢ 4.642/kWh. 10 Mar 2011 New Tariff (staged tariff) Approval by Ministry of Energy and Mineral Resources. Tariff – 3-stage tariff; US¢6.79/kWh on levelized basis Second ESC/JOC Amendments were signed 04 Apr 2013 28 Mar 2014 Loan agreements were signed 23 May 2014 Project Notice to Proceed (NTP)

18 Mar 2017Achieved the Date of Commercial Generation of Unit 1 (SIL) with Unit Rated
Capacity (URC) of 105.974 MW

02 Oct 2017 Achieved the Date of Commercial Generation of Unit 2 (NIL phase 1) with URC of 108.796 MW

Project Name	Sarulla Geothermal Power Project		
Location	Pahae Jae and Pahae Julu Sub District, North Tapanuli Regency, North Sumatra Province, Indonesia		
Capacity	3 X 110 MW		
Sponsors	PT Medco Power Indonesia (In June 2015, INPEX acquired 49% of Medco's interest) Itochu Corporation Kyushu Electric Power Co., Inc. Ormat International, Inc.		
Project Co.	Sarulla Operations Ltd ("SOL")		
Financial Close	23 May 2014		
Total Project Cost	USD 1.6 Billion (original budget)		
Scheduled Date of Commercial Generation	SIL: November 2016NIL-1: November 2017NIL-2: May 2018		
Contract Period	Period 30 years after NIL-2 COD		

Power Plant Technology – IGCCU (Integrated Geothermal Combined Cycle Units)

- Proven technology in Geothermal; used in countries of USA, New Zealand, Japan, Philippines, Turkey, etc.
- Utilizes both geothermal steam & brine to make electricity
- Reinjects 100% of the geothermal fluid (net of NCG)
- Uses air-cooling instead of water
- Multiple modular units

<u>THE FIRST IN INDONESIA</u>

The process

2-phase geo fluid is separated at the Separator station Steam enters back-pressure turbine at higher pressure and exhaust at lower pressure/still steam state. It then goes to the OEC bottoming binary units

Brine enters the brine binary units

Condensate and brine injected back to wells

MEDCOENERGI (M^r Plant Technology Features

Combined Cycle (Binary)

Condensing System

Air cooling enhances 100% reinjection and eliminates mists from water cooling towers

MEDCOENERGI Upstream Development & Drilling

NIL3 - Drilling NIL3-3

Completed 1st well on 9 Sept; Drilling of 2nd well in progress

NIL1n – Flow test NIL1N-8

Early September 2017

Early January 2016

Completed the tests and started commercial operation on 18 March 2017 at 00:00HRS with 105.974MW capacity

STG ~ 60MWg / Bott OECs ~ 29MWg / Brine OECs ~ 27MWg

Operating using 4 production wells & 6 injection wells in service

MEDCOENERGI (M^r Project Status – NIL Power Plant

NIL Power Plant – Excavation, backfilling and disposal

NIL Site in May 2015

MEDCOENERGI Power Plant Construction Status - NIL

Steam & Brine from Production wellpad to Power Plant

Steam condensate & Brine reinjected to wells Wellpad Area NIL2n Conducting steam blowing to achieve cleanliness of piping/vessels before flowing to the turbine

Power Plant

25

MEDCOENERGI (M^E Project Status – NIL Construction

MEDCOENERGI (P^{*} NIL phase 1 Commissioning Activities

NIL POWER PLANT (NIL 1)

URC test completed with total nett capacity 108.796 MW on 1 October 1230hrs (witness by PLN and PGE)

Steam blowing for NIL ph 1

Load acid for ph Control

Load pentane - OEC

Thank you